EXPOSURE TO CERAMIC AND PROCESS-GENERATED NANOPARTICLES DURING ATMOSPERIC PLASMA SPRAYING

IDAEA-CSIC, BARCELONA, SPAIN

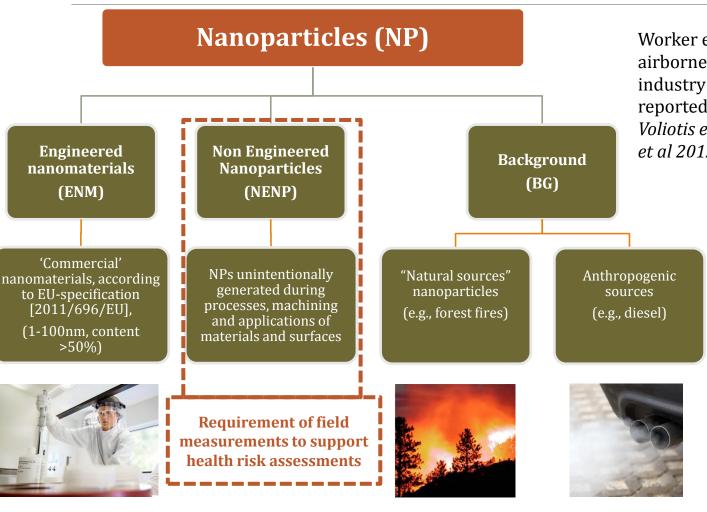
APOSTOLOS SALMATONIDIS, A.S. FONSECA, M. VIANA, X. QUEROL, A. LÓPEZ, P. CARPIO, E. MONFORT

Framework: CERASAFE

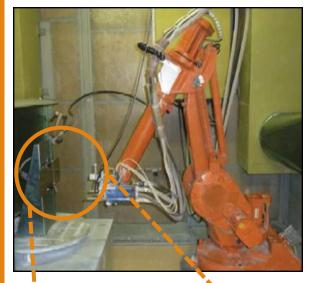
CERASAFE is a European project which addresses the issue of **"Safe production and use of nanomaterials in the ceramic industry.** It proposes an integrated approach to environmental health and safety (EHS) in the specific industrial sector :

- Characterize NP release scenarios in this sector and assess exposure by addressing the release mechanisms, toxicity, NP characterization, as well as mitigation measures
- Develop an online tool to discriminate engineered nanoceramic particles from background aerosols
- Establish a set of Good Manufacturing and Use Practices for nanoceramic materials, including risk assessment and recommendations

Project Partners



Motivation




Worker exposure to harmful airborne nanoparticles in ceramic industry workplaces has been reported (Monfort et al., 2008; Voliotis et al., 2014; van Broekhuizen et al 2012)

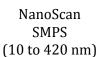
- Identification and quantification of nanoparticle emissions
- Assessment of potential worker's exposure to nanoparticles

Atmospheric Plasma Spraying

- Atmospheric pressure (ambient conditions)
- The feedstock material is spayed on the substrate
- Application of highperformance coatings (e.g. wear and corrosion resistant, thermal barriers)
- High energy process
- High potential for NP formation and release

Measurement Methodology

M

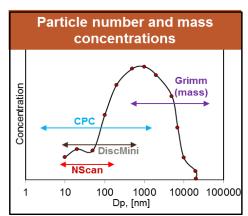


Plasma chamber

(10 - 700 nm)

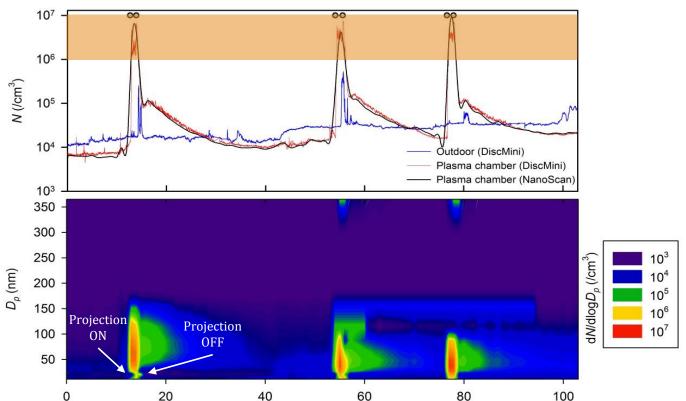
TEM samples

Breathing zone


DiscMini (10 - 700 nm)

Grimm 1.108 (300 to 20 000 nm)

TEM samples



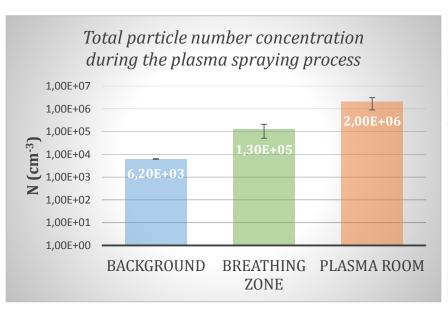
Results: N and D_p

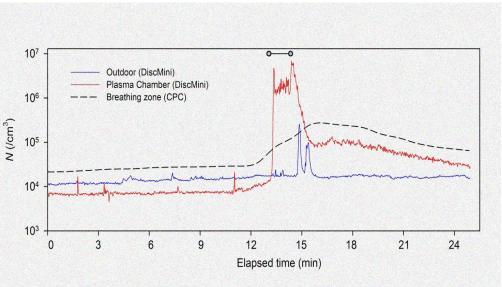
Feedstock: micro-suspension (ceramic glass powder <63 μm + 1% of fluidized nano-7 nm)

Elapsed time (min)

- Feedstock material: Na-Si-Ca-P (Na₂O; SiO₂; CaO; P₂O₅)
- Reproducibility over the repetitions
- 48 nm NPs are generated at the start of each projection
- NPs are generated even with micro-scaled feedstock (NENP)

Viana M., Fonseca A.S., Lopez-Lilao A., Monfort E., 2016 submitted

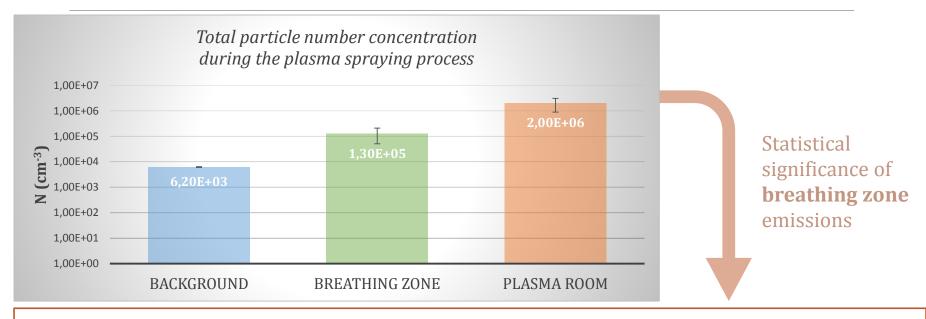




Results: Number concentration

Feedstock: micro-suspension (ceramic glass powder <63 μm + 1% of fluidized nano-7 nm)

- Number concentration (N) values from the plasma chamber are 322 times higher than the background values
- Number concentration (N) values from the breathing zone are 21 times higher than the background values



Results: Number concentration

1. Released particle concentration = (Total particle number N_{total} in workplace air during spraying) - (Total particle number background)

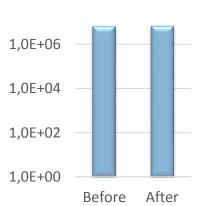
2. Release particle concentration $3 \cdot \sigma_{g \text{ theoretical Background Work area}}$

Ratio <1: not statistically significant

Ratio >1: statistically significant

RATIO=19

Asbach et al. (nanoGEM, 2012)



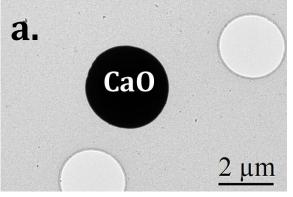
Mitigation strategies

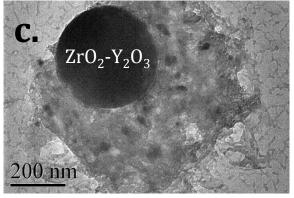
Plasma chamber

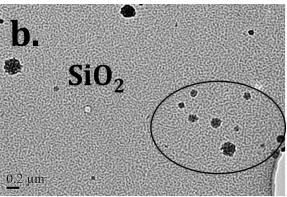
	Initial state	Final state
Breathing zone	Ventilation by natural convection (ACH<2)	 Force ventilation (ACH~14) A precise protocol for opening and closing the plasma room door (delay)
Plasma chamber	 Air entrance in the plasma chamber by a single point from the breathing zone 	 Air entrance in the plasma chamber from outside Improved air entrance distribution using a multipoint system surrounding the plasma chamber Enhanced sealing of the extraction system (ACH~11)

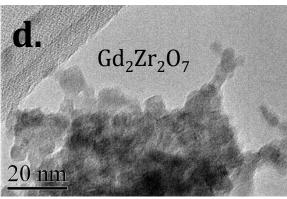
- Reduction of 80% in terms of N in the breathing zone, after mitigation measures
- However, number concentration values still above the NRV $(N > 40\ 000\ cm^{-3})$

ACH: Air Change per Hour (h⁻¹)





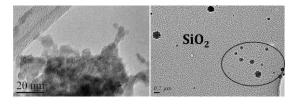



TEM analysis (EDS add-on)

TEM samples were collected from the Plasma chamber

Grain size (feedstock)	Composition (feedstock)	ТЕМ
Micro	Na ₂ O; SiO ₂ ; CaO; P ₂ O ₅ (1% nano)	a., b.
Micro	Na_2O ; SiO_2 ; CaO ; P_2O_5 (1% nano)	a., b.
Nano	ZrO_2 - Y_2O_3	c.
Nano	$\mathrm{Gd_{2}Zr_{2}O_{7}}$	d.

- Spherical shaped particles are unintentionally generated, resulting from fusion processes due to high energy condition (*Lahoz et al.,2011*; *Fonseca et al.,2015*)
- Cubic NPs are probably the original engineered NPs in the feedstock (d.)
- Process-generated NPs from the micro-scaled feedstock also detected



Conclusions

- High NP emissions in terms of particle number were recorded, which for the specific process (atmospheric plasma spraying) have not been reported before
- Major NP emissions were emitted from two sources:
 - due to the high energy processes
 - directly from the feedstock during the projection

- The mitigation measures that have been applied were efficient (80% reduction), but not-yet-sufficient
- NP emissions have been recorded in all of the experiments, regardless the respective feedstock material used (micro or nano)
- The emissions are mainly related to the process rather than to the particle size distribution of the starting material

Acknowledgements

- Institute of Ceramic Technology, Castellon (Spain)
- A.S. Fonseca, M. Viana, X. Querol, A. López, P. Carpio, E. Monfort
- CERASAFE framework and its respective founding agencies, organizations and institutions

www.cerasafe.eu

This project is funded by the **Spanish Ministry of Competiveness and Economy**, supported by **SIINN ERA-NET** and the **European Commission**



FP7 ERA-NET on Nanosafety Safe Implementation of Innovative Nanoscience and Nanotechnology

Thank you for your attention!

APOSTOLOS SALMATONIDIS

SPANISH NATIONAL RESEARCH COUNCIL (CSIC)

INSTITUTE OF ENVIRONMENTAL ASSESSMENT AND WATER RESEARCH (IDAEA)

Nano Reference Values (NRV)

- NRVs serve as provisional precautionary Occupational Exposure Limits for nanomaterials
- Workers will be exposed to concentrations >> NRV; thus, mitigation measures must be implemented

Description		
	(8-hr TWA)	
Rigid, biopersistent, insoluble, fiber form nanomaterials for which effects similar to those of asbestos are not excluded		
SWCNT or MWCNT or metal oxide fibres		
Non-biodegradable granular nanomaterials in the range of 1–100 nm and density $> 6~{\rm kg/L}$		
Ag, Au, CeO ₂ , CoO, CuO, Fe, Fe _x O _y , La, Pb, Sb ₂ O ₅ , SnO ₂		
	3	
Non-biodegradable granular nanomaterials in the range of 1–100 nm and density < $6\ kg/L$		
■ Al ₂ O ₃ , SiO ₂ , TiN, TiO ₂ , ZnO, nanoclay	particles/cm	
Carbon Black, C ₆₀ , dendrimers, polystyrene	3	
Nanotubes, nanofibers and nanowires for which asbestos-like effects are excluded		
Biodegradable/soluble granular nanomaterials in the range of 1–100nm		
e.g. NaCl-, fats, flower, siloxane particles		

Source: van Broekhuizen et al 2012, AnnOccHyg 56:515-524